混合動力電動汽車(HEV)和電動汽車(EV)之所以備受歡迎,是因為它們具有低(零)排放和低維護要求,同時提供了更高的效率和驅動性能。新的HEV/EV公司方興未艾,而且現有的汽車製造商正大舉投資HEV/EV市場,以爭奪市場份額。
HEV/EV動力總成的核心在於系統。該系統從電網獲取電力,將其存儲在電池中(靜止時),並從電池獲取能量以轉動電機並移動車輛。該系統主要包括四個子系統:車載充電器(OBC)、電池管理系統(BMS)、DC-DC轉換器(DC/DC)以及逆變器和電機控制(IMC),如圖1所示。在HEV/EV的BMS中經常忽略放大器的靈活性和成本效益。因此,本文將重點介紹BMS以及設計人員如何在系統中使用放大器。
圖1:典型的帶有OBC、BMS、DC/DC、逆變器和電機控制的HEV/EV系統圖
BMS的作用是什麼?
BMS維護和監控電池,包括有效和安全地充電和放電。BMS相對地平衡每個單體電池的電壓和電荷,監控電池的健康狀況,使電池保持安全的工作溫度,並確保更長的電池壽命。BMS應該防止諸如電池反復過度放電,因為這將縮短電池壽命,或應防止過度充電,因為這可能會損壞電池並引起火災或爆炸。HEV/EV中的電池是許多串聯和並聯的鋰離子電池組合,可以滿足所需的電壓和能量。待完全充電後,單個鋰離子電池的電壓為4.2V,放電時接近2.8V。HEV/EV中充滿電的電池電壓範圍為200V至800V。圖2是典型的BMS框圖。
圖2:BMS系統框圖
讓我們回顧一下BMS的主要功能。
電池電流感應
監控輸入電池組的電流和輸出電池組的電流至關重要。在主鋰離子電池中,該電流的大小往往高達數百安培。霍爾感測器、感應感測器或分流電阻器上的隔離放大器通常用於電池冷側(低電壓)到熱側(高電壓)電流感測。這些隔離電流感測解決方案可以具有類比差分輸出信號。隔離電流感測旨在保持熱側和冷側分離,並將關於感測到的電流的類比資訊提供給主微控制器中的由低壓電源供電的模數轉換器(ADC)。這種電流感測通常不需要非常準確。運算放大器將差分信號轉換為單端信號(以接地為參考),增加動態範圍,並驅動ADC。在BMS中,通常使用電流分流監控器進行精確的熱側電流感測。
圖3所示為不同電壓域的帶隔離放大器和運算放大器電路(用於帶直流傳遞功能的電流感測)。分流電阻上產生的電壓VSHUNT由一個隔離放大器放大,作為其隔離輸出的差分輸出信號VDIFF。運算放大器將差分信號VDIFF轉換為單端信號OUT,並通過向信號施加2 V/V的增益來提高動態範圍。隔離放大器偏移決定了初始電流感測精度。差分放大器的共模抑制比主要由電阻容差決定。
圖3:用於隔離電流感測的帶運算放大器的隔離放大器
DC-DC轉換器從HEV/EV中的主高壓電池生成單獨的48V電池子系統。這款48V電池子系統為空調、加熱、制動系統和動力轉向提供動力,並提供比使用鉛酸電池的傳統12 V電源軌更高的效率。48V子系統不含主電池那麼高的電流負載,但仍然需要電流感測,這就是為何它有自己的本地BMS。在48V BMS中,非隔離精密電流分流監控器用於主電流感測,雙向運算放大器電流感測電路用作冗餘過流保護。圖4所示為進行雙向電流感測的運算放大器電路。
圖4:低側雙向電流感應運算放大器電路
電池電壓感測
需要像電流一樣監控電池的電壓。在隔離電壓檢測中,電阻分壓器將高電壓從電池分壓到放大器的共模輸入範圍。隔離放大器感測到分壓電壓,差分放大器配置中使用的運算放大器將隔離放大器中的差分輸出信號轉換為單端輸出。若不需要隔離,則差分放大器配置中的運算放大器可以執行直接電壓感測。
圖5所示為採用隔離放大器和運算放大器的隔離電壓感測。隔離放大器隔離熱側和冷側,並輸出增益為1的差分信號。運算放大器將差分信號轉換為單端輸出,並使ADC增益滿足全動態範圍。該電壓被饋送到冷側MCU中的ADC。
專為BMS設計的集成功率晶片可跟蹤每個鋰離子電池的電壓並平衡電荷。以菊輪鍊方式連接這些功率晶片可以同時測量所有鋰離子電池的電壓,平衡這些電池上的電壓,並將此資訊傳遞給MCU。
圖5:通過隔離放大器和運算放大器感測隔離電壓
隔離漏流電流測量
正如我之前提到的那樣,高壓200至800V側與車輛底盤接地和其他低壓域(12 V和48 V)保持隔離。通過測試隔離中斷測量電池電壓和漏泄電流還將導致測量高壓軌與底盤接地的低壓之間的電阻或洩漏。汽車高壓和隔離洩漏測量參考設計解釋了測試隔離中斷。它需要使用已知的電阻路徑暫時短接隔離柵,如圖6所示。
圖6:帶運算放大器的隔離漏流電流測量電路
有必要從高壓電池的正極或負極側瞭解故障漏電流的路徑。每當發生隔離中斷時,繼電器S1位於正極側或繼電器S2位於負極側。將該已知的隔離電阻與測量的電阻進行比較可以確定通過隔離屏障的洩漏。
例如,當S1關閉時,如果在負極側無洩漏,則ISO_POS電壓將等於Vref。若在負極側存在漏電流(隔離破壞),則ISO_POS電壓將不等於Vref。由於漏電流流過Rps1、Rps2和Rs1、電池的正極側和負極側到低壓側接地,閉環增益不同。具有低輸入偏置電流的運算放大器適用于此應用,因為連接到反相輸入的阻抗可能非常高(在兆歐範圍內)。
溫度監測
HEV/EV需要高電壓和高電流,這可能導致高功耗和快速溫升。監測電池及其周圍系統的溫度非常有必要,以防止功耗過大。若故障導致高功耗,電池控制單元將斷開電池,以防止發生火災和爆炸等災難性事件。
一種經濟有效的溫度感測解決方案是使用運算放大器緩衝來自與電阻串聯的負溫度係數(NTC)熱敏電阻的信號。由於BMS和電池占位空間較大,因此整個系統的溫度可能不均勻。這種不均勻的溫度需要在整個BMS中放置多個溫度感測單元。將來自這些單元的信號複用到單個ADC或MCU引腳需要信號調節。還需要緩衝和放大信號,以滿足ADC的全動態範圍。
圖7說明了用於緩衝放大器或同相放大器配置的運算放大器。具有合理偏移和失調漂移的低成本高壓運算放大器適用于此應用。
圖7:使用NTC熱敏電阻和運算放大器進行溫度感測
聯鎖監測
聯鎖是一個電壓和電流回路系統,流經HEV/EV系統中的一系列子系統,如圖8所示。聯鎖從BMS啟動並經過逆變器、DC/DC轉換器、OBC再返回BMS,以監測任何篡改、打開高壓系統或打開維護艙口的事件。汽車高壓聯鎖參考設計解釋了聯鎖系統如何斷開高壓線路以防止受傷。
聯鎖回路主要涉及感測不需要高精度測量的以脈衝傳輸的電流。緊湊的解決方案需求可能會導致基於儀錶放大器的解決方案。最經濟的解決方案是在差分放大器配置中使用帶運算放大器和分立電阻的電流感測電路。聯鎖回路不是高電流回路;因此,您可以使用高值分流電阻,且不會有高功耗風險。安全和診斷功能需要冗餘,以覆蓋主系統發生故障時的情況。為檢測所有可能的故障,可能存在更多需要二次電壓和電流感測的情況,以及低成本解決方案變得更加可行的情況。
圖8:BMS中的聯鎖系統
結論
這些都是使用放大器的BMS中的標準功能,但根據系統設計,您使用運算放大器時可能會有更多功能。當出現新問題或異常問題且不存在集成解決方案時,基於運算放大器的解決方案變得更加實用。EV/HEV中的系統正在發展,且運算放大器提供快速、精確和靈活的解決方案的情況正變得越來越普遍。
參考文獻
1. 德州儀器BMS應用頁面。
2. 類比工程師的電路說明書。