當前位置: 主頁 > 技術&應用 >
 

如何為溫度感測器選擇正確的熱敏電阻

本文作者:德州儀器       點擊: 2020-05-06 17:39
前言:
 
當面對數以千計的熱敏電阻類型時,選型可能會造成相當大的困難。在這篇技術文章中,我將為您介紹選擇熱敏電阻時需牢記的一些重要參數,尤其是當要在兩種常用的用於溫度傳感的熱敏電阻類型(負溫度係數NTC熱敏電阻或矽基線性熱敏電阻)之間做出決定時。NTC熱敏電阻由於價格低廉而廣泛使用,但在極端溫度下提供精度較低。矽基線性熱敏電阻可在更寬溫度範圍內提供更佳性能和更高精度,但通常其價格較高。下文中我們將會介紹,正在市場投放中的其他線性熱敏電阻,可以提供更具成本效益的高性能選件,説明解決廣泛的溫度傳感需求的同時不會增加解決方案的總體成本。

適用于您應用的熱敏電阻將取決於許多參數,例如:
• 物料清單(BOM)成本。
• 電阻容差。
• 校準點。
• 靈敏度(每攝氏度電阻的變化)。
• 自熱和感測器漂移。
 
物料清單成本
熱敏電阻本身的價格並不昂貴。由於它們是離散的,因此可以通過使用額外的電路來改變其電壓降。例如,如果您使用的是非線性的NTC熱敏電阻,且希望在設備上出現線性電壓降,則可選擇添加額外的電阻器幫助實現此特性。但是,另一種可降低BOM和解決方案總成本的替代方案是使用自身提供所需壓降的線性熱敏電阻。好消息是,借助我們的新型線性熱敏電阻系列,這兩。這意味著工程師可以簡化設計、降低系統成本並將印刷電路板(PCB)的佈局尺寸至少減少33%。

電阻容差
熱敏電阻按其在25°C時的電阻容差進行分類,但這並不能完全說明它們如何隨溫度變化。您可以使用設計工具或資料表中的器件電阻與溫度(R-T)表中提供的最小、典型和最大電阻值來計算相關的特定溫度範圍內的容差。

為了說明容差如何隨熱敏電阻技術的變化而變化,讓我們比較一下NTC和我們的基於TMP61矽基熱敏電阻,它們的額定電阻容差均為±1%。圖1說明了當溫度偏離25°C時,兩個器件的電阻容差都會增加,但在極端溫度下兩者之間會有很大差異。計算此差異非常重要,這樣您就可選擇相關溫度範圍內保持較低容差的器件。
 
圖1:電阻容差:NTC與TMP61

校準點
並不知曉熱敏電阻在其電阻容差範圍內的位置會降低系統性能,因為您需要更大的誤差範圍。校準將告知您期望的電阻值,這可幫助您大幅減少誤差範圍。但是,這是製造過程中的一個附加步驟,因此應儘量將校準保持在更低水準。

校準點的數量取決於所使用的熱敏電阻類型以及應用的溫度範圍。對於較窄的溫度範圍,一個校準點適用於大多數熱敏電阻。對於需要寬溫度範圍的應用,您有兩種選擇:1)使用NTC校準三次(這是由於它們在極端溫度下的靈敏度低且有較高電阻容差),或2)使用矽基線性熱敏電阻校準一次,其比NTC更加穩定。
 
靈敏度
當試圖從熱敏電阻獲得良好精度時,每攝氏度電阻(靈敏度)出現較大變化只是其中一個難題。但是,除非您通過校準或選擇低電阻容差的熱敏電阻在軟體中獲得正確的電阻值,否則較大的靈敏度也將無濟於事。

由於NTC電阻值呈指數下降,因此在低溫下具有極高的靈敏度,但是隨著溫度升高,靈敏度也會急劇下降。矽基線性熱敏電阻的靈敏度不像NTC那樣高,因此它可在整個溫度範圍內進行穩定測量。隨著溫度升高,矽基線性熱敏電阻的靈敏度通常在約60°C時超過NTC的靈敏度。

自熱和感測器漂移
熱敏電阻以熱量形式散發能耗,這會影響其測量精度。散發的熱量取決於許多參數,包括材料成分和流經器件的電流。

感測器漂移是熱敏電阻隨時間漂移的量,通常通過電阻值百分比變化給出的加速壽命測試在資料表中指定。如果您的應用要求使用壽命較長,且靈敏度和精度始終如一,請選擇具有較低自熱且感測器漂移小的熱敏電阻。
 
那麼,您應該何時在NTC上使用像TMP61這樣的矽線性熱敏電阻呢?

查看表1,您可以發現:相同價格下,幾乎在矽基線性熱敏電阻的規定工作溫度範圍內的任何情況下,矽基線性熱敏電阻都可以從其線性和穩定性中獲益。矽基線性熱敏電阻也有商用和汽車用兩種版本,並採用表面貼裝器件NTC通用標準0402和0603封裝。
 

參數

NTC熱敏電阻

矽基線性熱敏電阻

物料清單成本

低至中:

·        熱敏電阻的低成本

·        可能需要額外的線性化電路

低:

·        熱敏電阻的低成本

·        無需額外的線性化電路

電阻容差

大:

·        25°C時容差與極端溫度之間的巨大差異

小:

·        整個溫度範圍內,較小±1.5%最大容差

靈敏度

不一致:

·        低溫下非常大

·        隨著溫度的升高急劇下降

一致:

·        在整個溫度範圍內保持穩定的靈敏度

·        高於通常超過60°CNTC

校準點

多點:

·        廣泛應用需要多個點

一個點:

·        廣泛應用僅需一個點

自熱和感測器漂移

高:

·        隨溫度增加功耗

·        感測器漂移大

最小:

隨溫度降低功耗

·        感測器漂移小

表1:NTC與TI矽基線性熱敏電阻

有關TI熱敏電阻的完整R-T表以及帶有示例代碼的簡便溫度轉換方法,請下載我們的熱敏電阻設計工具。
 
其他資源
• 閱讀白皮書“熱敏電阻的溫度傳感。”
• 查看TI的熱敏電阻頁面。
• 下載TMP61資料表。

電子郵件:look@compotechasia.com

聯繫電話:886-2-27201789       分機請撥:11